If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15v^2+26v-21=0
a = 15; b = 26; c = -21;
Δ = b2-4ac
Δ = 262-4·15·(-21)
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-44}{2*15}=\frac{-70}{30} =-2+1/3 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+44}{2*15}=\frac{18}{30} =3/5 $
| x+7+7x=45 | | √5−4w=√w+8 | | (3x–1)(5x+4)–15x2=17 | | x+8+2x=360 | | 481=(1*p+0.152*p) | | 11x+19x-6+5=-7x+5-6 | | 2x+5.5=25.5 | | 2/3=3t/5+1 | | H(-2)=5x^2-4 | | 72=6(m+3.8) | | 6{2b-4}b=5 | | n+4/3=3 | | x+6/7=5/x+8 | | 24=2a+8 | | 529.60=32(x+2.55) | | x+6/7=5/x | | -3/4(z-1/6)=-1/8(z-2/3) | | 6w-11=-5w+11 | | 8y-65=180 | | 8y-75+40+y=180 | | 2(1-5x)+1=5x | | 4/q=2 | | X+3/8=9/4+x-4/5 | | 8y-75+y=180 | | 20x=15(x-1) | | 4x(50)=627 | | -6x-3=3x+15 | | 2y-50+y=180 | | 42/(12x-13)=0 | | 3^x=120 | | 42/12x-13=0 | | -126=(4h-6) |